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Abstract. Recent research has seen an increasingly fertile convergence
of ideas from machine learning and formal modelling. Here we review
some recently introduced methodologies for model checking and system
design/ parameter synthesis for logical properties against stochastic dy-
namical models. The crucial insight is a regularity result which states
that the satisfaction probability of a logical formula is a smooth function
of the parameters of a CTMC. This enables us to select an appropriate
class of functional priors for Bayesian model checking and system design.
We give a tutorial introduction to the statistical concepts, as well as an
illustrative case study which demonstrates the usage of a newly-released
software tool, U-check, which implements these methodologies.

1 Introduction

Verification of temporal logic formulae via model checking is one of the major
success stories of theoretical computer science [1]. An important development
has been the introduction of probabilistic model checking [2,3,4], which aims
to verify logical formulae on trajectories of stochastic processes such as Con-
tinuous Time Markov Chains (CTMCs): here, due to the intrinsic stochasticity
of the system and the fact that formulae may evaluate differently on different
trajectories of the same system, the purpose of probabilistic model checking is
therefore to quantify the probability of a formula being true. From the theo-
retical point of view, probabilistic model checking has stimulated a remarkable
cross-fertilisation between applied mathematics and computer science, resulting
in a renaissance in algorithms for computing transient probabilities in Markovian
processes [5]. From the practical point of view, the impact of probabilistic model
checking has arguably been even greater, since ideas from verification and for-
mal modelling could now be applied to a wide array of models from the physical
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sciences and engineering disciplines. Partly as a result of these developments,
formal modelling is now a major player in applications as diverse as systems
biology, ecology, performance modelling and smart cities.

While probabilistic model checking is undoubtedly a major player in all ap-
plications of formal modelling, it is not without its challenges. Despite many
elegant algorithms for computing transient probabilities have been developed,
exact probabilistic model checking is still computationally too demanding to
be deployed on many realistic problems. Statistical model checking (SMC) algo-
rithms are often employed in these circumstances [6,7,8] if the underlying system
can be simulated efficiently, one can simply draw several independent trajectories
from the system, evaluate the formula of interest on each trajectory and obtain
in this way a Monte Carlo estimate of the desired probability. However, in many
applications, a more fundamental difficulty is encountered, as models are often
incompletely specified, relying on a parametrisation which can be highly uncer-
tain. For example, in a systems biology application a parameter may represent a
kinetic reaction rate which can only be measured with considerable approxima-
tion; in a smart-city application, a parameter may model how a group of trans-
port users may behave in a hypothetical scenario, which cannot be accurately
measured before the scenario is actually implemented. In many cases, therefore,
it is of primary importance not only to quantify the probability that a trajectory
of the system will satisfy a certain property, but also how this probability may
depend on uncertain parameter, and how to select parameter values which will
(robustly) yield consistent behaviour. While direct parameter exploration is in
some cases possible [9,10], it is always computationally intensive.

Recently, we proposed a novel family of algorithms for statistical model check-
ing and parameter synthesis on CTMC models with parametric uncertainty,
which can achieve considerable computational savings over parameter explo-
ration methods [11,12,13,14,15]. Our methods are theoretically grounded on a
novel characterisation of the functional dependence of the satisfaction proba-
bility of a formula on the parameters. This regularity result enables us to use
powerful methodologies from Bayesian machine learning, obtaining efficient al-
gorithms with theoretical guarantees. Recently, some of these methods have been
implemented in the open source U-check software suite [16], a flexible tool which
can interface with some of the most widely used modelling languages.

In this paper, we provide a tutorial introduction to these novel algorithms and
their use. We focus on providing an accessible introduction to the relevant statis-
tical machine learning concepts, as well as demonstrating the use of the U-check
tool on a non-trivial case study. The rest of the paper is organised as follows:
we start by reviewing briefly basic concepts of temporal logics and (Bayesian)
statistical model checking. We then introduce the notion of satisfaction func-
tion for models with parametric uncertainty, and introduce Gaussian processes,
a suitable class of functional priors. GPs are at the heart of Smoothed model
checking, a Bayesian statistical algorithm that directly performs model check-
ing of the whole satisfaction function. We then discuss the parameter synthesis
problem and introduce the GP-UCB algorithm, a provably globally convergent



optimisation algorithm which is at the basis of the parameter synthesis routines
in U-check. Finally, we illustrate the use of the U-check tool on an example, with
the aim of facilitating the use of these novel tools in practical applications.

2 CTMCs, temporal logics and statistical model checking

2.1 Continuous-Time Markov Chains

In this paper we will be mostly concerned with Continuous-Time Markov Chains
(CTMC), which are memoryless stochastic processes on a countable state space
evolving in continuous time [17]. CTMC are the most widespread class of stochas-
tic models in many areas, including performance and systems biology. In these
domains, they usually take the form of Population CTMC (PCTMC), describing
how a population of agents evolves in time [18]. Typically, the state of a PCTMC
M is represented as a vector of integer-valued variablesX = (X1, . . . , Xn), while
the dynamical evolution is represented by a set of transition classes. These spec-
ify events changing the state of some agents, and are easily represented in the
biochemical reaction style as follows:

r1X1 + . . .+ rnXn
α(X,θ)−−−−→ s1X1 + . . .+ snXn.

Each such a rule specifies that r1 agents in state X1, r2 in state X2, and so
on, interact and are replaced by s1 copies of X1 agents, s2 of X2 agents, and
so on. Hence, the net change of agents is given by the update vector v defined
by vi = si − ri. Each reaction happens with a rate or frequency given by the
function α(X, θ), depending on the current state of of the system and on a vector
of parameters θ.

Example. In order to illustrate the description of a PCTMC, we consider here a
simple example from system biology, describing the (uncontrolled) transcription
and translation of a gene into a protein. We need two variables, Xm and Xp,
counting the amount of messenger RNA and of protein in the system. We further

need four transition classes: transcription of DNA into mRNA (∅ kp−→ Xm) ,

degradation of mRNA (Xm
kdmXm−−−−−→ ∅), translation of mRNA into the protein

Xm
ktXm−−−−→ Xp, and degradation of the protein Xp

kdpXp−−−−→ ∅. In all cases, we
assume a mass action rate, proportional to the amount of reactants involved.
Note that the state space of this model is the countably infinite set N2.

Uncertain PCTMC. The dynamic behaviour of a PCTMCM can heavily depend
on the parameters θ, a fact we make explicit in the notation Mθ. As discussed
in the introduction, the values of θ are seldom known exactly, hence often we
can only assume that they belong to a certain compact, connected subset D of
Rd, where d is the dimension of the parameter space. By varying θ ∈ D, we have
a family of PCTMC models, which we will refer as an uncertain CTMC.



We conclude this section noting that we can consider different classes of
stochastic models, including Stochastic Differential Equations and Stochastic
Hybrid Systems. We refer the reader to [12,15,14] for a more detailed discussion
in this sense.

2.2 Metric Interval Temporal Logic

In order to describe behavioural properties of biological and complex systems
we will consider formal languages satisfying two main constraints:

– the language should capture properties of single executions of the system, as
this is the only way we can experimentally observe such a system;

– properties should be time-bounded, as we can observe a real system only for
a finite amount of time.

In this paper, we stick to the linear-time temporal-logic based formalism of
Metric Interval Temporal Logic [19,20], which is defined by the following syntax:

ϕ := tt | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[a,b]ϕ2.

Atomic predicates µ = µ(x(t)) are evaluated pointwise on time bounded tra-
jectories x : [0, T ] → Rn, and are usually boolean inequalities of the form
f(x(t)) ≥ 0. Boolean operators work as usual, while the time-bounded until
ϕ1U[a,b]ϕ2, with a < b, holds in a trajectory at time t0 whenever the formula
ϕ1 is satisfied from t0 to a time point t ∈ [t0 + a, t0 + b], at which ϕ2 must
hold. The time-bounded eventually and always operators are definable as usual:
F[a,b]ϕ := ttU[a,b]ϕ and G[a,b]ϕ := ¬F[a,b]¬ϕ. MITL can be given a boolean se-
mantics in a standard way, see [19,20] for details. Furthermore, it can be assigned
a quantitative satisfaction score along the lines of [21,22]. This semantics is ob-
tained by essentially using maxima (minima) and suprema (infima) in place of
conjunction (disjuction) and universal (existential) quantification, respectively,
and by replacing atomic predicates µ(x(t)) := f(x(t)) ≥ 0 with the real value
f(x(t)). It associates with a formula ϕ and a trajectory x a real number ρ(ϕ,x)
whose sign is associated with satisfiability of ϕ (true if and only if ρ(ϕ,x) is pos-
itive), and whose absolute value measures how robustly the formula is satisfied
by the trajectory. Both boolean and quantitative semantics can be efficiently
checked on sample trajectories by monitor algorithms, see [20,22].

The boolean semantics of MITL can be extended to stochastic models by con-
sidering the probability p(ϕ) = p(ϕ = tt) of the set of trajectories which satisfy
a formula ϕ. For the quantitative semantics, instead, this extension produces a
probability distribution over real numbers, see [15,13] for further details.

We remark here that the use of MITL is not mandatory: any linear-time, time
bounded formalism will do, provided it is equipped with a monitoring routine.

2.3 Statistical Model Checking

The goal of probabilistic model checking is to compute the satisfaction proba-
bility of a MITL formula (in accordance with the boolean semantics) for a given



stochastic (PCTMC) model. Numerical algorithms for this problem [23] are pro-
hibitively costly, hence the standard approach is to rely on statistical methods.
Basically, one combines a simulation algorithm for the stochastic process (e.g.,
Gillespie’s algorithm [24] for PCTMC) with a monitor routine for the MITL
formula ϕ, thus generating samples from a Bernoulli random variable with prob-
ability p(ϕ). Then, standard stastistical tools can be used to obtain an estimate
p̂ of p(ϕ), with a given error and confidence, or to test if p(ϕ) is greater or smaller
than a threshold q, see [6,8,7]. Of particular interest in the context of this paper
are Bayesian methods [8], which assume a prior distribution over p(ϕ), and com-
pute the posterior distribution, given the observed Bernoulli samples. Typically,
this prior is the Beta distribution, which is conjugate [25] with the Bernoulli
distribution, meaning that the posterior is still a Beta and hence analytically
computable [8].

When the quantitative semantics is concerned, pipelining a simulation algo-
rithm for PCTMC with a monitor will produce samples of a real valued random
variables, which can again be analysed with statistical means. In particular, in
[15,13], the authors focus on the average quantitative score as a measure of ro-
bustness of the property in the stochastic model, which can be estimated by
standard statistics.

3 Smoothness and functional priors

3.1 Satisfaction functions

We now switch our attention to examine the behaviour of the truth probability
of a formula as we change the model within a parametric family of models. The
scenario we consider is the following: let ϕ being a proposition in a suitable
temporal logic (e.g. MITL) which we wish to verify over the trajectories of a
stochastic process. LetMθ be an uncertain CTMC whose transition rates depend
on a set of parameters θ ∈ D where D is a connected, compact domain in Rd, as
in Section 2.1. For a fixed value of the parameters θ, model checking the formula
ϕ would return the probability pθ(ϕ) = p(ϕ = tt | Mθ) that the formula will
be evaluated as true on a randomly sampled trajectory of the system. This
procedure therefore defines a function from the parameters domain D to the
interval [0, 1]. We can formalise this in the following definition.

Definition 1. Let Mθ be an uncertain CTMC indexed by the variable θ ∈ D,
and let ϕ be a temporal logic formula. The satisfaction function fϕ : D → [0, 1]
associated with ϕ and Mθ is

fϕ(θ) = p(ϕ = tt | Mθ)

i.e., with each value θ in the space of parameters D it associates the satisfaction
probability of ϕ for the model with that parameter value.

The following theorem characterises the dependence of the satisfaction func-
tion on its parameters, and was proved in [12].



Theorem 1. Let ϕ be a formula in a suitable temporal logic and let Mθ be an
uncertain CTMC indexed by the variable θ ∈ D. Denote as α(X, θ) the transition
rates of the CTMC and assume that these depend smoothly on the parameters
θ and polynomially on the state vector of the system X. Then, the satisfaction
function of ϕ is a smooth function of the parameters, fϕ ∈ C∞(D). ut

3.2 Prior distributions over smooth functions – Gaussian Processes

Our discussion in Section 3.1 highlights the fact that, for uncertain CTMCs,
the concept of satisfaction probability must be replaced with a functional ana-
logue, which takes into account the influence that model parameters may have
on the satisfaction probability of the formula. From the statistical model check-
ing perspective, this suggests that Monte Carlo estimation should be replaced
by function approximation. We will retain a Bayesian perspective in this paper,
and construct a statistical model checking method based on Bayesian functional
approximation: this requires the definition of a suitable class of probability dis-
tribution over functions. Our theoretical analysis in Theorem 1 enabled us to
conclude that the satisfaction function is a smooth function of its arguments,
the model parameters: a natural choice of prior distribution over smooth func-
tions is a Gaussian Process (GP [26]). Formally, the definition of a GP is as
follows:

Definition 2. A GP is a collection of random variables indexed by an input
variable x such that every finite dimensional marginal distribution is a multi-
variate normal distribution.

In practice, a sample from a GP is a random function; the random vector ob-
tained by evaluating a sample function at a finite set of points x1, . . . , xN is a
multivariate Gaussian random variable. A GP is uniquely defined by its mean
and covariance functions, denoted by µ(x) and k(x, x′); the mean vector (co-
variance matrix) of the finite dimensional marginals are given by evaluating the
mean (covariance) function on every (pair of) point in the finite sample. Natu-
rally, by subtracting the mean function to any sample function, we can always
reduce ourselves to the case of zero mean GPs; in the following, we will adopt
this convention and ignore the mean function.

A popular choice for the covariance function, which we will also use, is the
squared exponential covariance function

k(x, x′) = σ2 exp

[
− (x− x′)2

λ2

]
(1)

with two hyper-parameters: the amplitude σ2 and the characteristic length scale
λ2 [26].

The covariance function endows the space of samples from a GP with a
metric: this is an example of a Reproducing Kernel Hilbert Space (RKHS). A
complete characterisation of such spaces is non-trivial; for our purposes, how-
ever, it is sufficient to show that their expressivity is sufficient to approximate



a satisfaction function by a sample from a GP. The following result is a simple
corollary of the results in [27]:

Theorem 2. Let f be a continuous function over a compact domain D ∈ Rp.
For every ε > 0, there exists a sample ψ from a GP with squared exponential
covariance such that

‖f − ψ‖2 ≤ ε

where ‖ · ‖2 denotes the L2 norm.

The results of Theorems 1 and 2 jointly imply that the satisfaction function of
a formula can be approximated arbitrarily well by a sample from a GP, justifying
the use of GPs as priors for the satisfaction function.

4 Smoothed model checking

To see how this fact enables a Bayesian statistical model checking approach
directly at the level of the satisfaction function, we need to explain the basics
of posterior computation in GP models. Let x denote the input value and let
f̂ = {f̂1, . . . , f̂N} denote observations of the values of the unknown function f
at input points x1, . . . , xN . We are interested in computing the distribution over
f at a new input point x∗ given the observed values f̂ , p(f(x∗)|̂f). A priori, we
know that the true function values at any finite collection of input points is
Gaussian distributed, hence p (f(x∗), f(x1), . . . , f(xN )) = N (µ, Σ), with µ and
Σ obtained from the mean and covariance function as explained before. This
prior distribution can be combined with likelihood models for the observations,
p(f̂ |f) in a Bayesian fashion to yield a joint posterior

p
(
f(x∗), f(x1), . . . , f(xN )|̂f

)
=

1

Z
p (f(x∗), f(x1), . . . , f(xN ))

∏
i

p(f̂i|f(xi))

where Z is a normalisation constant. The desired posterior predictive distribution
can then be obtained by integrating out (marginalising) the true function values
f(x1), . . . , f(xN )

p(f(x∗)|̂f) =

∫ N∏
i=1

df(xi)p
(
f(x∗), f(x1), . . . , f(xN )|̂f

)
. (2)

Equation (2) plays a central role in non-parametric function estimation; the
inference procedure outlined above goes under the name of GP regression. It is
important to note that, in the case of Gaussian observation noise, the integral
in equation (2) can be computed in closed form. For further details see e.g. [26].

Important remark: GP regression provides an analytical expression for the
predicted mean and variance of the unknown function at all input points.

In our case, observations of the satisfaction function are obtained through
boolean evaluations of a formula over individual trajectories at isolated param-
eter values. The satisfaction of a formula ϕ over a trajectory generated from a



specific parameter value θ is a Bernoulli random variable with success probabil-
ity fϕ(θ). In order to map this probability to the real numbers, we introduce the
inverse probit transformation

ψ(f) = g ⇔ f =

∫ g

∞
N (0, 1) ∀f ∈ [0, 1], g ∈ R

where N (0, 1) is the standard Gaussian distribution with mean zero and vari-
ance 1. The function gϕ(θ) = ψ(fϕ(θ)) is by construction a smooth, real valued
function of the model parameters, and can therefore be modelled as a draw from
a GP.

We can summarise the algorithm as follows: we draw m binary evaluations
of satisfaction at each of N parameter values θ1, . . . , θN ; these are collected
in a (binary) data matrix D = [d1, . . . ,dN ] whose rows di are the boolean m-
vectors of evaluations at θi. By construction, at each θi value the observations are
independent draws from a Binomial(m, fϕ(θ)). The inverse probit transform of
the satisfaction function gϕ(θ) = ψ(fϕ(θ)) is a smooth function of the parameters
and is assigned a GP prior. Denote as (g∗,g) the vector containing the values of
gϕ at a new parameter value θ∗ and at the training parameter values θ1, . . . , θN .
Using Bayes theorem and the marginalisation property (2) of GPs, the posterior
estimate of gϕ(θ∗) at a new parameter value is given by

p (gϕ(θ∗)|D) ∝
∫
dgN ((g∗,g)|0, Σ)

N∏
i=1

(fϕ(θi))
∑

di (1− fϕ(θi))
m−

∑
di . (3)

Computing this posterior distribution can be done accurately and efficiently
using the Expectation-Propagation algorithm described in [12].

5 Learning and designing systems from logical constraints

Smoothed model checking provides an effective algorithm for approximating the
satisfaction function of a formula, in other words, to examine the sensitivity of
the formula’s truth probability to the parameters of the uncertain CTMC. A re-
lated set of problems, which can also benefit from a machine learning approach,
is concerned with reducing the uncertainty in the model, either by incorporating
observations of the system, or by enforcing requirements in a system design sce-
nario. Parameter synthesis from observations of the state of a stochastic process
is a well studied problem in computational statistics and machine learning (see,
e.g. [28,29]). Here we focus instead on the less studied problem where observa-
tions are truth values of a (set of) formula over individual realisations of the
process (trajectories). The two questions we aim to address are the following:

1. Learning problem Given truth evaluations of a set of formulae over inde-
pendent individual realisations of a stochastic process, how can we find the
parameter set which optimises their probability (maximum likelihood)?



2. Probabilistic design problem Given a desired target (joint) probability
distribution for the truth of a (set of) formula, how can we find the parameter
set for a system which will optimally meet these requirements?

3. Robust design problem Given a behavioural requirement expressed as a
MITL formula, how can we find the parameter set for a system which will
satisfy this requirement as robustly as possible?

In this section, we review a GP-based approach to address these problems, which
was first presented in [11,14] for qualitative semantics (problems 1 and 2) and
in [13,15] for quantitative semantics (robustness of a formula, problem 3).

5.1 Observations, constraints and objective functions

All of these problems can be effectively addressed as optimisation problems; the
first step is therefore to define a suitable objective function. We focus our de-
scription on the Learning problem with qualitative semantics as it is the most
direct in terms of exposition; similar general considerations apply in the other
scenarios, although additional technical difficulties are encountered for quanti-
tative semantics [13,15].

The first step in setting up an optimisation procedure is to define an objective
function. Let ϕ1, . . . , ϕM be the formulae being monitored over system trajec-
tories, and arrange in the M ×N design matrix D the observed truth values of
the M formulae over N independent trajectories. Assuming one could access the
true joint satisfaction function of the formulae p(ϕ1, . . . , ϕM |θ) (an 2M vector
valued function of the parameters), a natural objective function would be the
log-likelihood function

L(D, θ) =

N∑
j=1

log[p(ϕ1(Tj), . . . , ϕM (Tj)|θ)] (4)

where p(ϕ1(Tj), . . . , ϕM (Tj)|θ) denotes the entry of the function p(ϕ1, . . . , ϕM |θ)
corresponding to the actual truth values observed on trajectory j. If the joint
satisfaction function is known analytically, one might be able to apply a variety
of optimisation methods to identify the maximum likelihood parameter set. Un-
fortunately, the log-likelihood (4) is never analytically available, except in the
simplest of cases.

In [11,14] we proposed an alternative, statistical approach to optimise the un-
computable log-likelihood (4). This is based on obtaining noisy estimates of the
function from a limited number of SMC runs, and then adopting a reinforcement
learning approach to obtain a provably optimal solution. In the next subsection,
we briefly detail the algorithm we use.

Th same optimisation approach can be used for problems 2 and 3. Probabilis-
tic design can be rephrased as the minimisation of a suitable distance function
(the Jansen-Shannon divergence) between the target joint probability and the
joint distribution p(ϕ1, . . . , ϕM |θ) for a fixed θ, see [11,14] for details. Robust
design, instead, has been modelled in [13,15] as the maximisation of the expected
quantitative score for the formula ϕ expressing the desired requirement.



5.2 Optimising un-computable functions – the GP-UCB algorithm

We have seen in Section 4 that Smoothed Model Checking can provide an accu-
rate reconstruction of the satisfaction function of a formula from a limited set of
truth evaluations. A naive idea would be to plug the Smoothed Model Check-
ing approximation in (4) and then directly optimise the resulting function. This
however would be a suboptimal procedure: as we are often interested in joint
probabilities, the computation of the training set for Smoothed Model Checking
might become computationally intensive (intuitively, we have to estimate 2M

satisfaction functions). It is therefore advantageous to use an adaptive strategy
to select the least possible number of parameter values where to evaluate the
log-likelihood (4).

The key insight we adopt comes from reinforcement learning: there, one is
tasked with devising an optimal strategy for an agent acting in an incompletely
known environment. A central object of study in reinforcement learning is the
trade-off between exploitation and exploration: the agent may settle for the
best known policy so far (exploitation), or it may choose better policies poten-
tially still unknown (exploration). Bayesian optimisation algorithms export this
paradigm to the world of optimisation by constructing a statistical model of the
unknown function which not only can predict the unknown function values, but
also quantify the uncertainty in the unknown function values.

More specifically, suppose one has already acquired function evaluations f̂ at
a number of initial training points x1, . . . , xN . In order to choose a subsequent
point, we first construct a GP model of the unknown function f by using GP
regression. To achieve a trade-off between exploration and exploitation, one then
optimises a quantile of the process (rather than the mean): in this way, rather
than choosing a point where the expectation is maximal, one chooses a point
where the function could be even greater. Formally, we introduce the concept
of acquisition function, an auxiliary function constructed from the statistics of
the GP model which is optimised to obtain the next evaluation point. Let the
unknown function f ∼ GP(µ, k) and let µN and βN be the posterior mean and
variance after N observations. The acquisition function we will use is defined as

αN (x) = µN (x) + λNβN (x) (5)

where λN is a constant factor (which depends on the number of points acquired
only).

The algorithm we use, called GP Upper Confidence Bound (GP-UCB), it-
eratively selects novel points for approximate function evaluation by optimising
the auxiliary function (5), which is known analytically due to the properties of
GP regression. Importantly, Srinivas et al [30] showed that the GP-UCB algo-
rithm is globally convergent with high probability for a particular choice of the
constants λN in (5) (which depends on the probability of globally converging).
Our approach to learning from logical constraints therefore relies on applying
the GP-UCB algorithm to equation (4) (or the analogous objective functions for
system design/ robustness optimisation, see [14,15]).



5.3 Related work: learning formulae

Our previous description has focussed on the scenario where a fixed formula was
evaluated over runs of an uncertain model. In reality, formulae may themselves
come in parametric families, and there may be uncertainty over the parametrisa-
tion/ structure of the formula. This is often the case for temporal logic formulae,
when the temporal bounds of formulae that best characterise a behaviour may be
subject to uncertainty (e.g. an oscillator of imprecisely known period in the case
of Signal Temporal Logic). In the most general case, one may have uncertainty
over both model and formulae parameters.

This general problem can also be addressed using ideas from machine learning
and in particular GPs. In [31] a general strategy was proposed where, given
observations of the state of a real system, one would learn a statistical model
of the system, and then optimise formulae parameters using GP-UCB to obtain
formulae that could optimally characterise a system (in the sense that they would
be satisfied by the system with high probability). This approach was applied
to the problem of discriminating cardiac arrhythmias from electro-cardiogram
data: the authors fitted hidden Markov models (HMM) to annotated sequences
to learn models of the different type of arrhythmias, and then applied the GP-
UCB procedure to determine temporal logic formulae which could optimally
discriminate different conditions.

6 The U-check software suite

All the algorithms discussed above have been implemented in the open source
tool U-check [16], available online6. U-check has been implemented in Java, it
runs cross platform, and can be used as a Java library or as a standalone software,
with a command line interface.

The simple interface of the tool takes as input an option file, which specifies
the algorithm to run. The choice at the moment is between smoothed model
checking (Section 4), parameter estimation from qualitative data and system
design using the MITL quantitative semantics (Section 5). The option file has
additional fields specifying additional properties of the algorithm, see [16] and
the online documentation for further details. Furthermore, one has to specify
the link to a model file and to the properties file.

U-check supports models specified in several modelling languages, some of
them of common use, such as PRISM guarded commands [2] and Bio-PEPA
[32]. It also supports models in the SimHyA modelling language [33]. Properties,
instead, can be specified only in MITL for the moment, though a spatio-temporal
extension of MITL [34] will be supported soon.

In the following section, we will illustrate the methods discussed and the use
of U-check through a simple example of a virus infection.

6 http://homepages.inf.ed.ac.uk/dmilios/ucheck

http://homepages.inf.ed.ac.uk/dmilios/ucheck


7 Case study: a CTMC model of viral infection

In this section, we show the statistical verification methods at work on a viral
infection model appeared in [35]. This model, in particular, is stiff, which makes
stochastic simulation very expensive. Therefore, any statistical method to ex-
plore the parameter space should minimise the number of simulation runs to
keep the analysis efficient. In this scenario, the use of smoothed model checking
and of active learning strategy for optimisation is of highest value.

The model has three counting variables keeping track of three species: the
viral template T , the viral genome G, and the viral structural protein S. Its
dynamics is given by the reactions of Table 1. It is assumed that nucleotides
and amino acids are available at constant concentrations, and their contribu-
tions to the rate functions are encoded in the model parameters. In the initial
state, we assume 1 molecule for T and zero for the rest of the species. In the
experiments that follow, we vary cn and ca, which are coefficients that control
the concentrations of nucleotides and amino acids correspondingly.

Table 1. Rate functions and default parameter values for the viral model.

Reaction Rate Function Kinetic Constant

nucleotides + T
k1−→ G + T k1XT cn k1 = 1, cn = 1

nucleotides + G
k2−→ T k2XGcn k2 = 0.025

nucleotides + amino acids + T
k3−→ S + T k3XT cnca k3 = 100, ca = 1

T
k4−→ ∅ k4XT k4 = 0.25

S
k5−→ ∅ k5XS k5 = 0.2

G + S
k6−→ V k6XGXS k6 = 7.5× 10−6

The trajectories of the model in question are characterised by irregular fluc-
tuations around a fixed level. We formalise this concept by the following formula
that captures fluctuations of a certain magnitude:

ϕ = F[100,150](G > Thi ∧ F[1,20](G < Tlo ∧ F[1,20]G > Thi)) (6)

The property will be satisfied if at lest one fluctuation occurs for the genome
population in the area specified by the threshold parameters Tlo and Thi .

The PRISM specification of the viral model, the MITL properties considered,
and the inputs for the experiments that follow, are distributed along with the
source code of U-check.

7.1 Using the Command-Line version of U-check

The U-check executable has to be provided with a configuration file that specifies
the properties of a certain experiment. The experiment options are in the form
of assignments as follows:



OPTION = VALUE

where VALUE can be a number, a truth value, or a string, depending on the
option. A comprehensive summary of the options available is given in [16], while
a exhaustive description can be found in the user manual associated with the
code release. We highlight the most important options required to execute the
algorithms supported.

– modelFile: A file that contains the model specification.

– propertiesFile: A file that contains one or more MITL properties.

– observationsFile: A file that contains qualitative observations; it is re-
quired for parameter inference from qualitative data only.

– mode: It can be either inference, robust or smoothedmc.

The parameters to be explored have to be defined by a declaration of the form:

parameter NAME = [A, B]

which implies that NAME is assigned with the interval between A and B.

7.2 Smoothed Model Checking

We demonstrate the configuration required to perform smoothed model checking
for the viral expression model. The code that follows dictates that the cn param-
eter (k nucleotides) is explored in the interval [0.8, 2] and ca (k amino acids)
in [0.5, 1]. In the viral.mtl we have specified the fluctuation formula in (6) for
Tlo = 280 and Thi = 320.

modelFile = viral.sm
propertiesFile = viral.mtl
mode = smoothedmc
parameter k_nucleotides = [0.8, 2]
parameter k_amino_acids = [0.5, 1]
endTime = 200
runs = 10
initialObservtions = 100
numberOfTestPoints = 1600

According to the initialObservtions option, the satisfaction probability will
be evaluated on a grid of 100 regularly distributed parameters values. The runs

and endTime options imply that for each parameter value 10 trajectories will be
sampled up to time 200. The numberOfTestPoints option means that satisfac-
tion function will be eventually estimated on a grid of 1600 points.

Eventually, U-check produces a csv file that contains the estimated satis-
faction probabilities for the specified grid of points, as well as a matlab/octave
script file that allows easy manipulation of the results. Automatic plotting for
up to two dimensions is also possible via the gnuplot program. Figure 1 depicts
a screenshot of the current smoothed model checking result.



Fig. 1. U-check screenshot: Smoothed model checking result presented via gnuplot

7.3 Robust Parameter Synthesis

The configuration that follows is an example of robustness optimisation.

modelFile = viral.sm
propertiesFile = viral.mtl
mode = robust
parameter k_nucleotides = [0.001 , 2]
parameter k_amino_acids = [0.001 , 2]
endTime = 200
runs = 10
initialObservations = 40
numberOfTestPoints = 100

The initialObservtions option specifies the number of points that are re-
quired for the initialisation of the GP-UCB algorithm; these will serve as the
initial training set for the GP that emulates formula robustness. The option
numberOfTestPoints controls the size of the GP test set used in each iteration
of the algorithm. Increasing this value will increase the possibility of discovering
a new potential maximum, assuming there is one.

The program output that contains the solution obtained and its robustness
value, as well as additional information regarding the progress of the optimisation
process; a screenshot can be seen in in Figure 2. The most robust values found for
cn and ca have been 1.929 and 0.766 correspondingly, with robustness value 20.4.
This implies that the system robustly fluctuates around in the area specified by
Tlo = 280 and Thi = 320.



Fig. 2. U-check screenshot: Robust parameter synthesis terminal output

7.4 Learning from Qualitative Observations

We shall demonstrate U-check capability of learning the model parameters from
qualitative observations on some artificial data. We make use of three variations
of (6), which capture fluctuations of different magnitude. The values used for
(Tlo , Thi) have been: (290, 310), (280, 320) and (270, 370). Artificial observations
have been generated by considering cn = 1.5 and ca = 0.75. We have sampled 100
independent trajectories from this fixed model and performed model checking,
resulting in a n×m matrix of boolean observations, where n = 100 and m = 3;
these are stored in the observations file viral.dat. Given that the formulae are
specified in a file named viral inference.mtl, the following configuration will
perform parameter inference:

modelFile = viral.sm
propertiesFile = viral_inference.mtl
observationsFile = viral.dat
mode = inference
parameter k_nucleotides = [0.001 , 2]
parameter k_amino_acids = [0.001 , 2]
endTime = 200
runs = 10

The program output is depicted in Figure 3. The optimal values for cn and
ca have been 1.445 and 0.762 correspondingly. The solution obtained is a good
approximation of the actual parameters that produced the data.



Fig. 3. U-check screenshot: Terminal output for inference from qualitative observations

8 Discussion

In this paper we gave a simple introduction to recent development at the border
between machine learning and formal methods, leading to statistically grounded
methods for the analysis of uncertainty in stochastic models. We used a simple
but representative case study of viral infection taken from system biology, to
show how these analyses can be performed with the tool U-check. The reader
interested in a more exhaustive discussion about performance and accuracy of
these these methods is referred to [12,14,15]. Applications of these techniques are
naturally found in domains as diverse as systems and synthetic biology, cyber-
physical systems, smart cities and collective adaptive systems. We believe that
the methods presented here, and related approaches, can provide effective tools
to investigate and design the behaviour of such systems.

Related Work. The cross fertilisation between ideas from statistical machine
learning and formal methods/verification is a novel area of research which is
gaining momentum. The bulk of works of the authors discussed in this paper is
part of this growing trend.

Parameter estimation using temporal logic and qualitative data has been
discussed in [36], using heuristic methods based on evolutionary algorithms to
explore the state space. This is in contrast with our approach [11,14], in which we
rely on more advanced optimisation techniques from active learning, providing
guarantees on finding the maximum likelihood estimate.



The same optimisation approach has then been used in [13,15] with the pur-
pose of system design of stochastic models, using temporal logic specifications
and leveraging its quantitative semantics.

Another problem which received considerable attention is the synthesis and
parameter exploration problem, where one is interested in the satisfaction prob-
ability as a function of some parameters. Besides our statistical approach [12],
there are some numerical methods based on exaustive exploration of the state
space combined with error bounds [9,10]. These methods, however, are much
more affected by the curse of dimensionality and by scalability issues.

A complementary problem which has been tackled with similar methods is
that of learning temporal logic formulae that best characterise model properties
or that explain observed data. In this respect we recall works of some of the au-
thors [31,37], exploiting active learning, possibly combine with heuristic searches
in the space of formulae. Other works dealing with learning of temporal logic
specifications are, for instance, [38,39].

Another area of formal methods in which machine learning methods have
a large potential is that of abstraction, recasted in a statistical sense. At the
moment, these ideas have been used to speed up simulation of systems with
multiple time scales [40] and systems where only a small portion is simulated
explicitly, while the rest of the system is abstracted by a Gaussian Process [41].
They have also been used for modular decomposition of systems in parameter
estimation tasks [42].

Finally, the integration of machine learning and formal methods is happening
also at the level of modelling languages. In [43], a novel process algebra is defined,
with a semantics in terms of uncertain CTMC, and equipped with inference
routines to reduce parametric uncertainty in presence of observations.
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